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In this paper we have introduced and stdied a new class of circular distri-
butions resulting from wrapping the exponential distributions on the real line .
The densities and distribution functions of wrapped exponential distributions
admit explicit forms, as do trigonomeltric moments and related parameters.
Wrapped exponential distributions retain the important properties of infinite
divisibility and maxim entropy of the corresponding expanential distributions.
The estimation of parameters via maximum likelihood is straightforward. The
mixture of two wrapped exponential distributions leads to a wrapped Laplace
distribution, so that the properties of former distribution are useful in studying
the latter one. Both distributions are promising for modeling directional data.

Introduction

In this paper we obtain a new class of non-symmetric circular distributions by
wrapping an expunential d istribution around the circumference of a unitcircle. When
a real random variable (r. v.) X with probability density function (p.d.f.) fand charac-
teristic function (ch. £.) ¢ is wrapped, then the p.d.f. of the wrapped r.v.,

X, = X (mod 2m) (1)
has the density function

for=y " J+2km).0 € [0.2m). )

and the characteristic function (the discrete Fourier transform)

¢, =Lem™ =0(p),p= 0,:1,£2,...

ardia and Jupp, 2000). Since the ¢’s are the

(Jammalamadaka and Seh Gupta, 2000, M
ds to the inversion formula, one can also

Fourier coefficients, using what correspon
write the density f, () in the alternative form

1u6) =Zﬁ,¢,e"’“,ee [0,27). @

Circular distributions play an impurtant role in'madeling directional data arising in
various fields. While the wrapped normal, Cauchy, and stable distributions have been
studied extensively (Levy,193Y, Gatta and Jammalamadaka, 1999) litlle work seems

to have been done for the case of wrapped exponential or double exponential (Laplace)

distributions.

distribution, with its important memaryless property, is a stan-

The exponential
nd numerous other fields (Barlow and

dard model in reliability, queuing theary, a
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0 - 1
Proschen , 1996), while the Laplace distribution and its generalizations, that-arise in
arly for financial dpplications .

grrometric summation, are becoming promiaing, particul
(Kotz et al, 2000). We believe that the circular counterparts of the two families would
find applications for directional data. In this paper we develop a basic theory for the
wrapped exponential distribution, finding that many properties of exponential distri-
bution on the real line have analogs in the directional setting. The wrapped Laplace
distribution, which is a mixture of two wrapped exponential distributions, will be the

subject of a forth coming sequel.

Wrapped exponential distribution .
Consider an exponential distribution with parameter A > 0, whnse'p.'d ‘.-f. and ch.f.

are

fly=a", x>0 (5)

and '
, ' o) =1/(—itlA), 1€ R, L (6)
respectively. Then, by (3, the ch.f. of the corresponding '\’N}apped distribﬁt.ioﬁ:'i's
9, =1/1=ip/A), Pp=0.%1E2 )

To derive the p.d.f cnrre_‘.sponding to (7), use (2) and note that for 8e[0,2r) the

density f(9 + 2k7r) is non-zero only fork20. Thus, we obtain the following wrapped

exponential p.d.f.

f (9)v='le'”’ i[e"""]k _Ae” geoam
" - . e (8)

kel l 8

The above fornlwla. may be extended through the property of periodicity for val-
ues of 8 nutside the interval [0, 2r), i.e., ' '

f.0)=f6mod2r) -
for any other 8. That the density satisfies this period.i‘ci'ty property ©) ga'n'.b._e checked
easily. : TR IR
Definition 1: A . v. © on the unit cirele is said to have wrapped exponential distribu-
tion with parameter A > 0, denoted by W E (N), if the ch.f.and the p.d.f. of © aregiven by (7)
and (8), respectively. We ten write © ~ W E (A). : :
The distribution function (c.d.f.) of the wrappe
tained easily by integrating the p.d.f.(8): .
[

Fu0)= 6 [0,21).
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‘Observe that when A= & tre
circular uniform distributian, Thus, we can include ihe latter. distributice zlong with
the parameter A = 0" into the akove class. o

Remark : Note that if the original exponential r.v. i restricted te fhe wnterval
[0, 27), then the resulting distribution coincides with the wrapped distribulion! in
other words, the wrapped rv. X, given by (1) has the same probability distribution as
(X/X .. 2x) for an exponentially distributed X (the truncated exponential distribu-
tion). . . T T .
Remark : Natice that the wrapped exponential p.c.f.(8) integrates to 1 an [0,27)
forany A € R. When A< 0, the distribution given by (8) Tesults from wrapping the
negative exponential distribution with parameter | A [>0, whose p.d.f. is

f(x) ='|/qei"[", x<0. )

ions W E (A) with AeR.

Thus, one can consider a more general class of distribut

Remark: A more general class of circular distriburions can be obtained by wrap-

ping the gamma distribution with p.d-f s e
(x)= LI x>‘0 A>0,0>0 | "

and characteristic function

1. Y '
= : ) R. <
#) -(1—1:/1) i (13)

Fora =1 the.p.d.f (12) "reduces to the expanential p.d.f. (5). Although the character-
istic function of the corresponding ‘wrapped distribution has a simple form,

L], e
the correspanding density function.,-'-_:..:
L al .
£.6)= F(E’_)Z?(G +2kr) e, 6€[0.27), | a5

obtained by (2), lacks an explicit form (except for few special cases, including eipn-
nential with o =1). ‘ ' .

Remark: Recall that fora given probability distribution density p(x), the so called
tilted {or weighted) distribution corre?:punding to the weight function w(x) has den-
sity pmportitmal to w(x) p(x) (see, Rao, 1983). ‘It was noted by Roy (1997) that the

g
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distribution with density (8) arises in logistic discrimination &nalysis s @i exponen-
tially weighted uniform circular distribution (witli'the weight function w(x) =¢ ™).

Remark: By Wrapping a skewed Laplace distribution with densit_vn"_ _.

F)= pf, @)+ (1= p)falx). reR . - s

where 2 . ! )
£(2)=2, e (x>0) . f{0)=% e (x<0), a”n
S

and p=1/(k*+1), A, =2k A, =A/k .
for some x, A > 0 [Kotz et al, 2000) we obtain a skewed wrapped Laplace distribut'i:('m
with the explicit density :
A0 A

e At
a +(- P
s

,0e10.27), (19)

.f“.(9)=/)1 -

e

Properties of the wrapped Laplace distribution with density (19) may be dérived from-
those of wrapped exponential distribution. .

Let A > 0 and let © have a WE(}) distribution with density f given by (8). Then,
the density of the rv. 2r - © is given by f (2 - g). 6, € {0, 2r}. But,

A c-l(!n‘-ﬂ) ._/1 cfw

' 7-.' = - T A
fln-0)="— = = (20)

which is the density corresponding to the W E (-1 ) distribution. Thus we have the

following simple result.

Lemma 1: If © ~ WE () then 2 - © ~ WE (-A). o
Atial distributions), then the densities are
strictly decreasing on the interval [0,2r) , while forA <0 (wrapped negative exponen-
tial distributions) the densities are strictly increasing on [0, 2r). All densities are de-
fintjd on the whole real line by a periodic extension. o

Note that if A >0 (wrapped expone

Trigonorhetric Moments and Related Parameters

We shall start with raw trigonometric moments o, and f,, defined by the equality

¢/:=alv+iﬁ/n[7=U'i]’i2’ ' (21)

Since the ch.f. of the WE (&) distribution with A =20 is

I Al pA - .
. = +i— > =0,il,i2, . e iyt
P l—ip/A  A+p’ A +p p=t=5 S (22)
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b, e By =y P=OELEL (23}

Remazk By the reprebentahon (4). the wrapped exponential density admits the
Fourier rep—e:‘entatxon . - '

-~

f.6)= [:1+ 22 cgs p9 + 7 ;:_

x v’v::j

P - sin p ] (I24\,
P .

The msan dxrechon and the resultant.length Now, we write

¢p=ppci"g' ,p20, ' (25)

so that
Pr =,\)arz '.*'45.».2 . |"L|/\J’12 + pz. p20. | (26)

The angle pf', satisfies thgiequation

tan pb=—L=2,
Hp* a, A 27)
so that we have _
o [ran(plA), for A >0,
) = 28
" Nog+tan(plr),  for A <0. (28)
In particular, the resultant length is
P=pi 2L (29)
_ T NI
while the mean direction is : : ,
A tan”' (11 A), for A >0.
=H = 30)
oS T o tan (AR, for A <. (30)

Note that pr € (0, 1:/7) for A>0Oandpe (3n/2, 2%) for A <0.
_Circular vanance and standard devmhon The c1rcular variance V=1-p

becomes
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JI+A -2

—_— e —

) NI+A?
g, =+-21n(1-V,). o .(32).
% =

Yy

The circular standard deviation,

takes the form

m(+1/27) (33)

igonometric moments of a circu-

Central trigonometric mo:h_ents: The central tr
lar r.v. © are defined by the equation

u,=E (B ='(Z,}_ i B; ' (34)
where j1_ is the mean direction. Since the expectation in (34) is given by e, we
have .

o,=p, co.v(u;', = p,u,,), ﬁl, =P, sin (}lz - p/.l,,). 35)
By (26) and (28) , the central trigonometric moments of the WE (A) distribution with
A= are
a—=-—|x—|-——c()s(tan"( )/ A)- )tnn"(lll)) .-
r \//1 2+ 7, ] ] (36)
P
and

(8

Py =ﬁz+ P’

Skewness and Kurtosis : One common measure of skeweness of a circular dis-
tribution is . .

sin(tan"(p/l)—plan"(l/)v)). . | (37)

Y = EAIJW ) (38)

(Mardia and Jupp, 2000) . To calcutate ¥, for the wrapped exponential distribution,
we need its second central trigonometric moment. By (35), we have

[

. _ﬁ_.='__l
VA 2+4 .
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Since . BYE RS
By 2sink --\.
sinp? = TL = S, 08l =T 40)
P J/"Tz-!-é o (0
. , B, a, 23 ' e 2
Sin24 =2 §in g COS g =———F =7 o2l =1=2 sin’ fty =1———=,
g =2 oty T e ST e
we obtain after some algebra, o "
'ﬁ—_ . =22
AT o
" Thus, the skewness of the WE (M) distribution is
o 24
Yo F i T i
(1+x~=)"(4+x’{J1+;.*-x) (43)
Next, ‘we consider the circular kurtoéis,
,),o __——2-—(]"‘/(:)4 a4
7 E] 3 K
' e L
(Mardia and Jupp, 2000). The value of @, follows from (35),
a. = (cos.',uz cos 2y, + sin sl 2,uu) . (45)
Ja 4. :
The substitution of (40) an_d'(4i) into (45) results in
(46)

= A (}L’ +3)
s (l + A E4 + A )
Now, we substitute (46) along Wi.ti\ k3i) .int.o (44) tb obtain after ro-L;tine calctlations :
b e : |

75 = ' s
’ (1+,1=)(4+,1=(1/1+,1‘ ~Ja J’

We see that the distribution is leptokurtic (y: >0 for all A= 0.
n direction &,0f a circular distribution

The median direction: A population media
with density f is any solution (in the interval [0, 2r)) of

@7)
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Lo+ St ! . N M ,'.'
f[ Fl)do= [ fO)de=1/2 .- : (48; .

I
where the density fgatisfies
f(’;ll)> -f(gl? + ﬂ:) *
of the median direction for the wrapped

[0,71'] define a function

(49)

{Mardia and jupp, :20()0). The calculation
exponential distribution is straight forward. For e

E+x

g(§)=.-jf;-(9)(19 : (50)

where f, is the density (8) of the WE(A) distribution. Note that forA >0 the function
g is continuous and strictly decreasing with g(0) > 1/2and § (m)<1/2, while for A < 0,
it is continuous and strictly increasing with g( 0 )<1/2and g (%) > 1/2. Thus, the
equation (48) has a unique solution. Substituting the WE (A) density (8) into (48) and
taking into account; (49), after routine calculations we obtain the following valuesof

the median directian:

e o1 2 0, forA>0,
=—1ln
So = e w, for A< (61)
l!
Properties 2
In this section we shall study further properties of the wrapped expanential dis-
tribution. :

rv. © (and its probability distribu-

Infinite divisibility: Recall that an angular
tegern 2 1 there exist i.i.d. angular

tion ) is said to be infinitely divisible if for any in
rv.'s ©,, e O, such that

[ +0, (mod 27)° 0. (52)
As remarked by -Mardia and Jupp (2000),.if a real r.v. X is infinitely divisible, then so is
the wrapped r.v. X, . Thus, since an exponential r.v. X'is infinitely divisible (as is -X),
the wrapped exponential distribution WE (&) is infinitely divisible for every. A € R.
Indeed, if A=0, then the WE () rv. @ has the circular uniform distributions and
thus satisfies (52), where ©/'s are Li.d copies of © (the convolution of circular uniform
distributions is circular uniform). Alternatively, if © ~ WE (A) with A =0, then the

ch.f. of ©, ¢’,, can be factored as

] Ny " ' .
b= TpE 0 H T e




§ Wl’lert’ = i g el

is the ch.f. of the wrippéd ga
of @ is equivalent to (52), we see that the wrapped exponential distribution is infinitely
divisible. The following result summarizes these discussion.

Proposition 1: /'@ ~ WE(}), where A€ R, Hwﬁ ©is inﬁn i‘t’ély divisible. Moreover, for

mma distribution. Since the factorization (33) uf the ch.f.

any positive integer n = 1, _the equality in distribution (52) holds where the ©,'s have the
uniforni circular distribution for A = 0 and the wrapped gmmma distribution with the chif (54}
fOf'A.;ﬁO. : Lo A @ SR £

_Geometric infinite divisibility ; The classical exponential distribution has
an important property of stability with respect to geometric compounding. Let
lvq, ge (0, 1))be a family of geometric distributions with mean 1/g; so that

Pl =k)=(-¢)"g, k=123, ... (55)
As noted by Arnold (1973), .if.‘AX has:.an expoﬁential distributior-\:'.with parameter A.and
density (8) then. . . P LI
qz xAtx, qe(01) _ (56)

where the X/'s are i.i.d. copies of X. Equivalently, we have

J=l

xtyv,, qe(01) 23 ST )

‘where Y, = gX; has the exponential distribution with parameter A/g.  The Jatter
equality in distribution shows that the exponential distribution is geometrically infi-
nitely divisible, (Klebariov-et al., 1984). Motivated by the abave property of the expo-
nential distribution, we introduce a notion of geometric infinite divisibility for angular
distributions. ) g o ; ; '

Definition 2: An angular r.v. © is said to be geometric infinitely divisible if for any
ge (0,1) there exist iid. angular rv.’s ©,, ©,, .cieees such that .

Q-+, (modr)d6, ENCT (58)

where v has the geometric distribution (55).
Clearly, geometric infinite divisibility of a real r.v. X.implie‘s the same property for the
wrapped r.v. X, . Thus, all wrapped exponential rv.’s are_geometric infinitely
divisible. ’ ‘2 . e
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Proposition 2: if ~© ~ WE (), where L €R, then © is geametric infinitely, ===
divisible. Moreover, forany e (0,1) the equality in distribution (58} holds where the
©,% have thewuniform circular distribution for A= 0 and the WE (L/¢) distribution for
A= . _

Proof: First, assume that A =0, in which case © has the circular uniform distri-
bution with the ch.f.

(‘Irwi _] .
p, =—, PF 0. . 59
! 2npi .o (59)
Let ©, ©,, ...... be i.id. copies of ©. Conditioning on the distribution of. v, , we can .

write the ch.f. of the left hand side in (58) as follows :

R =
E(ll‘(ﬁq 13t Xmacal =ZEt1ﬂqv_,_.ﬂ‘4 Xunle(,{l _{I)

I

3 6L)
=Z¢rt](|—-q),.| =¢F' ( ; )

where we have used the stability property (52) or the circular uniform distribution.
Since we obtained the ch.f. of the circular uniform distribution, we conclude that the

representation (58) holds for this case. The proof for the case X 0 is similar and we

omit it.

Remark: We can restate the conclusion of proposition 2 as follows: if 8, 0, w.
are i.i.d. with the WE (}) distribution, then the equality in distribution (58) holds,
where the r.v. © has the WE (Ag) distribution. We see that as g converges to zero, then
the distribution of ©+....+0, (mod 2n) converges to the WE (0) distribution, which
is the circular uniform distrii)ution. Recall that under mild conditions, the conver-
gence to the circular uniform distribution holds in general if there are n terms in the

summation and n — e (Mardia and Jupp, 2000). 2 .
Maximum entropy property: The entropy of a rv. © with p.d.f. f is defined as’
follows : - . ' _

HO)=- [rOm e

-

and measures the uncertainty associated with the probability distribution of ©. A gen-
eral inference procedure consisting of finding a distribution that maximizes the en-
tropy (61) was proposed by Jaynes (1957), and the method has found the applications
in a variety of fields including statistical mechanics stock market analysis, queuing
theory, and reliability estimation (Kapur, 1993). It is well known that under no restric-
tions on f the entropy (61) is maximal for the circular uniform distribution, while if
the mean direction and circular variance are fixed, then the von Mises distribution
vields the maximal entropy (Kapur, 1993). It turns out that the wrapped exponential
distribution WE (A) maximizes the entropy under the constrain that the mean be

fixed,
52
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62

Kl

o, 0<mEzR

Proposition3: Conside: tie class C of all the ciresler ro 'S with density fselofyfig the
condition (62). Then, the wmaxinium entropy is atisines by the WE (A) distribusion with
density (8), where A=(2nE) and § satisfies the equation ,

=6 = +%]

mo-, P " ; )
2 e _q° sow e w o L (67)

Moreozer the maximal entropy is

(b4)

l 1- e-ZA‘.’.

(/ 1-¢2% | 2ze™
‘Bee

H(©)=!
max ()-nk A

Proof: The result follows from the fact that under the condition (62) the entropy
is maximized by truncated exponential distribu tion with density Ce”* (8€ [0. 21)) with
the value of A specified above ( Kapur, 1993), since as.we observed earlier truncated
exponential density coincides with the wrapped exponential density on the interval
[0, 27). The value of the maximum entropy (64) is abtained by straightforward inte-
grration in (61) where fis the wrapped exponential density (8).

Remark: Since the function g(£)'= E - (e"/¢-1)" is monotonically increasing from
1/2 to 1 on the interval (- e, 0), and monatonically increasing from 0 to 1/2 on the
inverval (0, ), the distribution maximizing the entropy (61) under the restriction (62)
is wrapped exponential (A>0) for 0 <m <m wrapped negative exponential (A <0)
for 0<m < 2%, and circular uniform (A =0) form==.. - ' Be .

Remark: The above result is analogous to the well-known maximum entropy
characterization of the exponential distribution (which maximizes the entropy among
all continuous probability distribution on (0, ea), witH a given mean (Kapur, 1993)).

Estimation

Here we considerthe proble:p}_bf estimating the para
exponential distribution. Let &, s..,6, be random sampl
with p.d.f. g . .

meter A of a general wrapped
e from WE (1) distribution

-2

L ®= 6el02n),AeR - . (65)

A
1-¢*
In casel A = O the distribution is understood in the limiting case where f(6)=1/2r,
6 e [0.2n) (circular uniform distribution).

 The maximum likelihood estimation: Let us define the statistic

. = ] "o . .
=20 o j (6)
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where G.e.1}. Then, the likelihood function takes the fpn‘n '

: . L "¢
L@ )= 1;1 7, i )= E]—j;:m)? - . (67)

while the log-likelihood is

gA)=InL( )=ninl-nin (l- c"z"")- 2n )b - (68)

o

Our objective is to find the value of A thal maximizes the log-likelihood function § ..
The first derivative of g is .

d - —
252 )= 2m(n(2r 2)-6). (69)

where the real function It is defined as follows
n(x)=1/x -1/(e* -1) . (70)

The following simple result summarizes those properties of h that are relevant to our
problem.

Lemma 2: The function h defined by (70) is continuous and strictly decreasing on (-,
o) and onto (0,1) with I (0) =1/2,lim__ h(x) =0, and lim,_,__ h(x) = 1.

Proof: First, note that clearly lim, _ I(x) = 0, and Jim__, __ h(x) = 1. The value at
zero, h (1) =1/2, follows by D’ Hospital’s rule applied to the Jimit lim__, (). It
remains to show that the function i is strictly decreasing. It is enough to show that
I (x) <0 forx = The latter inequality becomes

h'(x =-—:——"—-.—-; <{). (71).

We assume that x >0, since the casex < (s quite'similar. Denoting y=¢*- 1>0, we
have i

2
2 )
n*(y+1)< ,y>0, '
(' ) y+1 (72)
or, taking the roots,
In(y+1)< . y>0. '
- | (73)
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that u _ ' ;

d -y d - v . w e
e fy () <= Iy ) y=0. ‘'3 (7.4
dy 1.( ) dy 2(}) ) {74)

Upon taking the derivatives, (74) becomes

] 1+y/2

1+}'<(1+J’)JH—}' ' 72 R
which is equivalent to |

Jl+y<l+yp/2,  y>0. (76)
After squaring each side, the latter inequality yields

1+ y<l+y+y/4, y>0, 77 .

which holds trivially. Finally, in the case x< 0,denote y=1-e*>0 and pmcéed asin
the previous case. :

The wrapped exponential case: Assume that the sample is from the wrapped
exponential model WE (A), A 2 0. If the statistic § > 1/2, then by (69) and Lemma 2,

the first derivative of the log-likelihood function is negative for all A 2 0. Thus, the
. likelihood is strictly decreasing on [0, «) and the maximum value is attained at 2 =.0.

" On the other hand, for0< 7 <1/2, there will be a unique point{ € [0, es) such that
~ the lbg—likglihood function g increases on [0, 1) and decreases on {1, =), and conse-
quen'tly, such point will be the maximum likelihood estimate of A . The following
result .summarizesithis discussion. : ) ’ R
oK 'Pro'pé'sition 4 .,liet 8,, ..., 6, be a random sample front the WE (L)_'dis't'ributio‘n with
p.df. (65), where A 2 Q. " Then, the maxinum likelihood estimate 7 of X is unique and is
" gioen by B : e e m e W g
(a) A=0if 6 >1/2;
) L=12720"(6) iro<d <12
where the statistic § is given by ( 65) and Ir" is the inverse of h given by (70).

The wrapped negative exponential case: -If the sample is from the WE (}) distri-
bution with A £0 (wrapped negative exponential model), then for § < 1/2, the first
¢ o A

55



A Wrapped Exponentlal Cbzdulx'l\{lcc.iel :
derivative of the log-likelihood function is positive for ali % % 0, ‘and consespienfly the
MLE of A is equal to zero. For § 21/2, the MLE 6f A is the same as beforz.: -

Proposition 5: Let 8, ..., 8, be a randomn &:m;;iefrom the WE () distritation with
pitf. (65). tohere A <0. Then, the maxinum likelihood estinaie i of & is umizve and is

Liven by

~

@ A=0if§ <1/2;

® A=12z1"(6) it ¥<d 1y
where the statistic § is given by (66) and Ir' is the inerse of h given by (70),
The general case : Tf the sample is from the general WE (1) distribution with A e
R, then the MLE of X is equal to zero only if § =1/2.

Proposition 6: Let g, .., 8, be a random sample from the WE () distribution
with p.d.f (65), where A eR. Then, the unique maximum likelihood estimate of A is

l . n -—
i= ?,E" ‘¥, where § and Jr! are as before.
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